Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ivan E. Kareev, a + Sergey F. Lebedkin, b Susie M. Miller, c Oren P. Anderson,^c Steven H. Straussc* and Olga V. Boltalinac

^aInstitute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia, ^bForschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ^cDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

‡ Also at: Forschungszentrum Karlsruhe Institute for Nanotechnology Karlsruhe 76021 Germany

Correspondence e-mail: steven.strauss@colostate.edu

Kev indicators

Single-crystal X-ray study T = 100 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.047 wR factor = 0.130 Data-to-parameter ratio = 11.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4,10,19,25,32,41,49,54,60,66,69-Dodecakis(trifluoromethyl)-1,4,10,19,25,32,41,-49,54,60,66,69-dodecahydro(C_{70} - $D_{5h(6)}$)-[5.6]fullerene benzene 2.5-solvate

The title compound, which crystallized with 2.5 molecules of benzene in the asymmetric unit C₈₂F₃₆·2.5C₆H₆, is one of two isomers of $C_{70}(CF_3)_{12}$ that represent the first structurally characterized fullerene derivatives with exactly 12 substituents. This isomer consists of an idealized D_{5h} - C_{70} core with the 12 CF₃ groups arranged on a para⁷-meta-para ribbon of edge-sharing C₆(CF₃)₂ hexagons plus an isolated C₆(CF₃)₂ hexagon. There are no cage $Csp^3 - Csp^3$ bonds. As in the recently published structures of C_s - $C_{70}(CF_3)_8$ and C_1 - $C_{70}(CF_3)_{10}$, there are intramolecular $F \cdots F$ contacts between pairs of neighboring CF₃ groups ranging from 2.486 (3) to 2.864 (3) Å.

Received 12 December 2005 Accepted 6 January 2006

Comment

Recently reported high-temperature reactions of C₆₀, C₇₀, or Y@C₈₂ with CF₃I, C₂F₅I, or Ag(CF₃CO₂) followed by sublimation at 673–773 K have yielded fullerene $(R_f)_n$ derivatives with thermodynamically stable asymmetric addition patterns that are unprecedented in fullerene $(X)_n$ chemistry. Those characterized by single-crystal X-ray diffraction include $1,3,7,10,14,17,23,28,31,40-C_{60}(CF_3)_{10}$ (Kareev, Kuvychko, Lebedkin, Miller, Anderson, Seppelt et al., 2005), 1,4,10,-19,25,41,49,60,66,69-C₇₀(CF₃)₁₀ (Kareev, Kuvychko, Popov et al., 2005), 1,7,16,36,46,49- $C_{60}(C_2F_5)_6$, and 1,6,11,18,24,27,32,35-C₆₀(C₂F₅)₈ (Kareev, Kuvychko, Lebedkin, Miller, Anderson, Strauss & Boltalina, 2006). The title compound, (I), has now been prepared and we report its crystal structure here.

© 2006 International Union of Crystallography All rights reserved

The structure of (I), shown in Fig. 1, consists of an idealized D_{5h} -C₇₀ core with 12 Csp³ atoms at positions 1, 4, 10, 19, 25, 32,

doi:10.1107/\$1600536806000651

Figure 1
The molecular structure of (I) (50% probability ellipsoids) (left) and a Schlegel diagram of (I) (right), showing C-atom numbers (each CF₃ group is depicted as a triangle), the p^7mp ribbon of edge-sharing $C_6(CF_3)_2$ hexagons, and the isolated $C_6(CF_3)_2$ hexagon.

41, 49, 54, 60, 66, and 69 (Powell *et al.*, 2002), each of which is attached to a CF₃ group. None of the core Csp^3 atoms is adjacent to one another. Thus, the CF₃ groups are arranged on a $para^7$ -meta-para ribbon (p^7mp ribbon) of edge-sharing $C_6(CF_3)_2$ hexagons plus an isolated $C_6(CF_3)_2$ hexagon (see Schlegel diagram in Fig. 1). As in the recently published structures of C_s - $C_{70}(CF_3)_8$ (Goryunkov *et al.*, 2005) and C_1 - $C_{70}(CF_3)_{10}$ (Kareev, Kuvychko, Popov *et al.*, 2005), there are the usual $F \cdot \cdot \cdot F$ intramolecular contacts between pairs of neighboring CF_3 groups that range from 2.486 (3) to 2.864 (3) Å.

The p^7mp ribbon in (I) may be a particularly stable feature in $C_{70}(CF_3)_n$ derivatives for n > 8. The same p^7mp ribbon is seen in the structure of C_1 - $C_{70}(CF_3)_{10}$ (Kareev, Kuvychko, Popov *et al.*, 2005) and in another isomer of $C_{70}(CF_3)_{12}$ (Kareev *et al.*, 2006). Additionally, the structure of C_s - $C_{70}(CF_3)_8$ is derived from C_1 - $C_{70}(CF_3)_{10}$ by removing the C71 and C72 CF₃ groups, leaving a p^7 ribbon (Goryunkov *et al.*, 2005).

The five shortest cage C–C bonds are C67–C68 [1.354 (3) Å], C8–C9 [1.358 (3) Å], C17–C18 [1.368 (3) Å], C50–C51 [1.370 (3) Å], and C52–C53 [1.373 (3) Å]. Note that both C8–C9 and C52–C53 are pent-hex junctions.

Experimental

The synthesis of (I) was accomplished by heating C_{70} in a stream of CF_3I at 693–723 K as described in Kareev, Kuvychko, Lebedkin, Miller, Anderson, Seppelt *et al.* (2005) for C_1 - $C_{60}(CF_3)_{10}$ and C_1 - $C_{70}(CF_3)_{10}$. Crystals were grown by slow evaporation of a saturated benzene solution.

Crystal	data
---------	------

$C_{82}F_{36} \cdot 2.5C_6H_6$	Z = 2
$M_r = 1864.09$	$D_x = 1.883 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 12.3839 (17) Å	Cell parameters from 999
b = 12.7864 (18) Å	reflections
c = 22.274 (3) Å	$\theta = 1.7 - 26.4^{\circ}$
$\alpha = 89.374 \ (2)^{\circ}$	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 82.468 \ (2)^{\circ}$	T = 100 (2) K
$\gamma = 70.221 \ (2)^{\circ}$	Block, orange
$V = 3288.1 (8) \text{ Å}^3$	$0.23 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Bruker SMART 1K CCD	13271 independent reflections
diffractometer	9305 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.032$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 2000)	$h = -15 \rightarrow 15$
$T_{\min} = 0.960, T_{\max} = 0.973$	$k = -15 \rightarrow 15$
27678 measured reflections	$l = -27 \rightarrow 27$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0675P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 1.8907 <i>P</i>]
$wR(F^2) = 0.130$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
13271 reflections	$\Delta \rho_{\text{max}} = 0.46 \text{ e Å}^{-3}$
1198 parameters	$\Delta \rho_{\min} = -0.33 \text{ e Å}^{-3}$
H-atom parameters constrained	

H atoms were placed in idealized positions and refined using a riding model [C-H = 0.95 Å and $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C})$].

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used

to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the U.S. National Science Foundation, the Volkswagen Foundation (I-77/855), and the Russian Foundation for Basic Research (Project Nos. 05-03-33051a and 06-03-33147a) for supporting this study.

References

Bruker (2000). SADABS (Version 2.10), SMART (Version 5.625), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

- Goryunkov, A. A., Dorozhkin, E. I., Ignat'eva, D. F., Sidorov, L. N., Kemnitz, E., Sheldrick, G. & Troyanov, S. I. (2005). *Mendeleev Commun.* pp. 225–227
- Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. & Boltalina, O. V. (2005). *J. Am. Chem. Soc.* 127, 8362–8375.
- Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). *Chem. Commun.* pp. 308–310.
- Kareev, I. E., Kuvychko, I. V., Popov, A. A., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2005). *Angew. Chem. Int. Ed.* 41, 7984–7987.
- Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). Acta Cryst. E62, o620–o622.
- Powell, W. H., Cozzi, F., Moss, G. P., Thilgen, C., Hwu, R. J.-R. & Yerin, A. (2002). Pure Appl. Chem. 74, 629–695.