Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivan E. Kareev, ${ }^{\text {a }} \ddagger$ Sergey F. Lebedkin, ${ }^{\text {b }}$ Susie M. Miller, ${ }^{\text {c }}$ Oren P. Anderson, ${ }^{\text {c }}$ Steven H. Strauss ${ }^{\mathrm{c} *}$ and Olga V. Boltalina ${ }^{\mathrm{C}}$
${ }^{\mathrm{a}}$ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia, ${ }^{\text {b }}$ Forschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ${ }^{\mathrm{c}}$ Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
\ddagger Also at: Forschungszentrum Karlsruhe Institute for Nanotechnology Karlsruhe 76021 Germany

Correspondence e-mail:
steven.strauss@colostate.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.130$
Data-to-parameter ratio $=11.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4,10,19,25,32,41,49,54,60,66,69-Dodeca-kis(trifluoromethyl)-1,4,10,19,25,32,41,-49,54,60,66,69-dodecahydro(C_{70} - $\mathrm{D}_{5 h(6)}$)[5,6]fullerene benzene 2.5 -solvate

The title compound, which crystallized with 2.5 molecules of benzene in the asymmetric unit $\mathrm{C}_{82} \mathrm{~F}_{36} \cdot 2.5 \mathrm{C}_{6} \mathrm{H}_{6}$, is one of two isomers of $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{12}$ that represent the first structurally characterized fullerene derivatives with exactly 12 substituents. This isomer consists of an idealized $D_{5 h}-\mathrm{C}_{70}$ core with the $12 \mathrm{CF}_{3}$ groups arranged on a para ${ }^{7}$-meta-para ribbon of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons plus an isolated $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon. There are no cage $\mathrm{Cs} p^{3}-\mathrm{Csp} p^{3}$ bonds. As in the recently published structures of $C_{s}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ and C_{1} $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$, there are intramolecular $\mathrm{F} \cdots \mathrm{F}$ contacts between pairs of neighboring CF_{3} groups ranging from 2.486 (3) to 2.864 (3) Å.

Comment

Recently reported high-temperature reactions of $\mathrm{C}_{60}, \mathrm{C}_{70}$, or $\mathrm{Y} @ \mathrm{C}_{82}$ with $\mathrm{CF}_{3} \mathrm{I}, \mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{I}$, or $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$ followed by sublimation at $673-773 \mathrm{~K}$ have yielded fullerene $\left(R_{\mathrm{f}}\right)_{n}$ derivatives with thermodynamically stable asymmetric addition patterns that are unprecedented in fullerene $(X)_{n}$ chemistry. Those characterized by single-crystal X-ray diffraction include 1,3,7,10,14,17,23,28,31,40-C $60\left(\mathrm{CF}_{3}\right)_{10} \quad$ (Kareev, Kuvychko, Lebedkin, Miller, Anderson, Seppelt et al., 2005), 1,4,10,-19,25,41,49,60,66,69-C ${ }_{70}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Kuvychko, Popov et al., 2005), 1,7,16,36,46,49- $\mathrm{C}_{60}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right)_{6}$, and 1,6,11,18,24,27,32,35$\mathrm{C}_{60}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right)_{8}$ (Kareev, Kuvychko, Lebedkin, Miller, Anderson, Strauss \& Boltalina, 2006). The title compound, (I), has now been prepared and we report its crystal structure here.

(I)

The structure of (I), shown in Fig. 1, consists of an idealized $D_{5 h}-\mathrm{C}_{70}$ core with $12 \mathrm{Csp}{ }^{3}$ atoms at positions $1,4,10,19,25,32$,
(C) 2006 International Union of Crystallography All rights reserved

Figure 1
The molecular structure of (I) (50% probability ellipsoids) (left) and a Schlegel diagram of (I) (right), showing C-atom numbers (each CF_{3} group is depicted as a triangle), the $p^{7} m p$ ribbon of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons, and the isolated $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon.
$41,49,54,60,66$, and 69 (Powell et al., 2002), each of which is attached to a CF_{3} group. None of the core Csp ${ }^{3}$ atoms is adjacent to one another. Thus, the CF_{3} groups are arranged on a para ${ }^{7}$-meta-para ribbon ($p^{7} m p$ ribbon) of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons plus an isolated $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon (see Schlegel diagram in Fig. 1). As in the recently published structures of $C_{s}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ (Goryunkov et al., 2005) and C_{1-} $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Kuvychko, Popov et al., 2005), there are the usual F..FF intramolecular contacts between pairs of neighboring CF_{3} groups that range from 2.486 (3) to 2.864 (3) A.

The $p^{7} m p$ ribbon in (I) may be a particularly stable feature in $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{n}$ derivatives for $n>8$. The same $p^{7} m p$ ribbon is seen in the structure of $C_{1}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Kuvychko, Popov et al., 2005) and in another isomer of $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{12}$ (Kareev et al., 2006). Additionally, the structure of $C_{s^{-}}$ $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ is derived from $C_{1}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$ by removing the C 71 and $\mathrm{C} 72 \mathrm{CF}_{3}$ groups, leaving a p^{7} ribbon (Goryunkov et al., 2005).

The five shortest cage $\mathrm{C}-\mathrm{C}$ bonds are C67-C68 [1.354 (3) Å], C8-C9 [1.358 (3) Å], C17-C18 [1.368 (3) Å], C50-C51 [1.370 (3) Å], and C52-C53 [1.373 (3) Å]. Note that both C8-C9 and C52-C53 are pent-hex junctions.

Experimental

The synthesis of (I) was accomplished by heating C_{70} in a stream of $\mathrm{CF}_{3} \mathrm{I}$ at $693-723 \mathrm{~K}$ as described in Kareev, Kuvychko, Lebedkin, Miller, Anderson, Seppelt et al. (2005) for $C_{1}-\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$ and C_{1} $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$. Crystals were grown by slow evaporation of a saturated benzene solution.

Crystal data

Data collection

Bruker SMART 1K CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\text {min }}=0.960, T_{\text {max }}=0.973$ 27678 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.130$
$S=1.02$
13271 reflections
1198 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.883 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 999 \\
& \quad \text { reflections } \\
& \theta=1.7-26.4^{\circ} \\
& \mu=0.18 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Block, orange } \\
& 0.23 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

13271 independent reflections 9305 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-27 \rightarrow 27$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0675 P)^{2}\right. \\
\quad+1.8907 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.46 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{-3.33 \mathrm{e}^{-3}}
\end{aligned}
$$

H atoms were placed in idealized positions and refined using a riding model $\left[\mathrm{C}-\mathrm{H}=0.95 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used

organic papers

to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the U.S. National Science Foundation, the Volkswagen Foundation (I-77/855), and the Russian Foundation for Basic Research (Project Nos. 05-03-33051a and 06-03-33147a) for supporting this study.

References

Bruker (2000). SADABS (Version 2.10), SMART (Version 5.625), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

Goryunkov, A. A., Dorozhkin, E. I., Ignat'eva, D. F., Sidorov, L. N., Kemnitz, E., Sheldrick, G. \& Troyanov, S. I. (2005). Mendeleev Commun. pp. 225 227.

Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. \& Boltalina, O. V. (2005). J. Am. Chem. Soc. 127, 8362-8375.
Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Chem. Commun. pp. 308-310.
Kareev, I. E., Kuvychko, I. V., Popov, A. A., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2005). Angew. Chem. Int. Ed. 41, 7984-7987.
Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Acta Cryst. E62, o620-o622.
Powell, W. H., Cozzi, F., Moss, G. P., Thilgen, C., Hwu, R. J.-R. \& Yerin, A. (2002). Pure Appl. Chem. 74, 629-695.

